
Searching for optimal Boolean chains

Adam P. Goucher

February 28, 2023

Boolean chains

A Boolean chain is a sequence of 2-input Boolean gates.

For example, the full adder has n = 5 gates and k = 3 inputs:

1 y1 = x1 ⊕ x2;

2 y2 = x1 ∧ x2;

3 y3 = y1 ⊕ x3;

4 y4 = y1 ∧ x3;

5 y5 = y2 ∨ y4.

Each gate can only depend on inputs or previously-computed values.

Boolean chains

A Boolean chain is a sequence of 2-input Boolean gates.

For example, the full adder has n = 5 gates and k = 3 inputs:

1 y1 = x1 ⊕ x2;

2 y2 = x1 ∧ x2;

3 y3 = y1 ⊕ x3;

4 y4 = y1 ∧ x3;

5 y5 = y2 ∨ y4.

Each gate can only depend on inputs or previously-computed values.

Five normal gates

Without loss of generality we can assume that all gates ◦ are:

Nontrivial: a ◦ b depends on both a and b;

Zero-preserving: 0 ◦ 0 = 0.

Knuth (2011) calls these normal chains.

Out of the 22
2
= 16 functions, 8 are zero-preserving, of which 5 are

nontrivial:

O = {⊕,∧,∨, <,>}

These correspond to AVX instructions vpxor, vpand, vpor, vpandn.

Five normal gates

Without loss of generality we can assume that all gates ◦ are:

Nontrivial: a ◦ b depends on both a and b;

Zero-preserving: 0 ◦ 0 = 0.

Knuth (2011) calls these normal chains.

Out of the 22
2
= 16 functions, 8 are zero-preserving, of which 5 are

nontrivial:

O = {⊕,∧,∨, <,>}

These correspond to AVX instructions vpxor, vpand, vpor, vpandn.

Five normal gates

Without loss of generality we can assume that all gates ◦ are:

Nontrivial: a ◦ b depends on both a and b;

Zero-preserving: 0 ◦ 0 = 0.

Knuth (2011) calls these normal chains.

Out of the 22
2
= 16 functions, 8 are zero-preserving, of which 5 are

nontrivial:

O = {⊕,∧,∨, <,>}

These correspond to AVX instructions vpxor, vpand, vpor, vpandn.

Rewriting
Many logic synthesis tools (e.g. Berkeley’s ABC) work by local
rewriting: replacing small subcircuits with more efficient equivalents.

Prior work
Berkeley’s ABC finds 4-input cuts and optimally rewrites those.

Nan Li and Elena Dubrova (2011) found significant benefits (5%
cost reduction) by using a library of 1200 5-input functions.

We shall take this to its ultimate logical conclusion: finding all
optimal chains for 616125 of the 616126 equivalence classes of
5-input functions.

https://people.eecs.berkeley.edu/~alanmi/abc/
https://arxiv.org/abs/1108.3675

Prior work
Berkeley’s ABC finds 4-input cuts and optimally rewrites those.

Nan Li and Elena Dubrova (2011) found significant benefits (5%
cost reduction) by using a library of 1200 5-input functions.

We shall take this to its ultimate logical conclusion: finding all
optimal chains for 616125 of the 616126 equivalence classes of
5-input functions.

https://people.eecs.berkeley.edu/~alanmi/abc/
https://arxiv.org/abs/1108.3675

Prior work
Berkeley’s ABC finds 4-input cuts and optimally rewrites those.

Nan Li and Elena Dubrova (2011) found significant benefits (5%
cost reduction) by using a library of 1200 5-input functions.

We shall take this to its ultimate logical conclusion: finding all
optimal chains for 616125 of the 616126 equivalence classes of
5-input functions.

https://people.eecs.berkeley.edu/~alanmi/abc/
https://arxiv.org/abs/1108.3675

Equivalence classes

We can transform a k-input ℓ-output function into an equivalent
function by:

Permuting inputs (k! possibilities);

Negating inputs (2k possibilities);

Permuting outputs (ℓ! possibilities);

Negating outputs (2ℓ possibilities);

which generate the group (S2 ≀ Sk)× (S2 ≀ Sℓ) of order 2
k+ℓ(k!)(ℓ!).

0001 < 0010 < 0100 < 0111 < 1000 < 1011 < 1101 < 1110

We describe the lexicographically first truth table in an equivalence
class as canonical.

Equivalence classes

We can transform a k-input ℓ-output function into an equivalent
function by:

Permuting inputs (k! possibilities);

Negating inputs (2k possibilities);

Permuting outputs (ℓ! possibilities);

Negating outputs (2ℓ possibilities);

which generate the group (S2 ≀ Sk)× (S2 ≀ Sℓ) of order 2
k+ℓ(k!)(ℓ!).

0001 < 0010 < 0100 < 0111 < 1000 < 1011 < 1101 < 1110

We describe the lexicographically first truth table in an equivalence
class as canonical.

Counting equivalence classes

We can count the equivalence classes using Burnside’s lemma; the
dominant term will be:

|C | ≊ 22
kℓ

2k+ℓ(k!)(ℓ!)

https://en.wikipedia.org/wiki/Burnside_lemma

Number of classes of functions of each cost

n 5-input 1-output 4-input 2-output
0 2 4
1 2 8
2 5 38
3 20 193
4 93 916
5 389 4869
6 1988 27219
7 11382 135402
8 60713 475926
9 221541 713796
10 293455 117828
11 26535 19
12 1 0

Total 616126 1476218

Size of search space

With k inputs and n gates, the total number of Boolean chains is:

n−1∏
i=0

5

(
i + k

2

)

In particular, for 5 inputs and 11 gates, the number of chains is:

18874939423183593750000000 ≊ 1.89× 1025

This is about 60x more than the number of floating-point operations
used to train GPT-3 (3.14× 1023).

Size of search space

With k inputs and n gates, the total number of Boolean chains is:

n−1∏
i=0

5

(
i + k

2

)

In particular, for 5 inputs and 11 gates, the number of chains is:

18874939423183593750000000 ≊ 1.89× 1025

This is about 60x more than the number of floating-point operations
used to train GPT-3 (3.14× 1023).

Size of search space

With k inputs and n gates, the total number of Boolean chains is:

n−1∏
i=0

5

(
i + k

2

)

In particular, for 5 inputs and 11 gates, the number of chains is:

18874939423183593750000000 ≊ 1.89× 1025

This is about 60x more than the number of floating-point operations
used to train GPT-3 (3.14× 1023).

Room for improvement I: canonical ordering
In many cases, a single DAG can correspond to multiple Boolean
chains:

1

5

2 3

6

4

7

For example, the order of computing variables 5 and 6 could be
swapped.

Room for improvement II: triangle-free

Also, triangles can be removed from our DAG without loss of
generality:

1

3

2

4

1

3

2

4

Key insight

0x00ff

0x0ff0

0x0f0f 0x3333

0x6666

0x5555

0x6996

Simply represent this as the set {0x0ff0,0x6666,0x6996}.

Key insight

0x00ff

0x0ff0

0x0f0f 0x3333

0x6666

0x5555

0x6996

Simply represent this as the set {0x0ff0,0x6666,0x6996}.

Reconstruction of chains from tt-sets

By performing a backtracking search, we can reconstruct all
possible chains corresponding to a tt-set.

Beginning with the set of truth tables corresponding to inputs,
try applying all possible gates which result in a truth table
belonging to the tt-set.

We enforce the ‘canonical ordering’ and ‘triangle free’ properties
at all times.

The total runtime is O(Sn3) where S is the number of chains
outputted by the algorithm.

Reconstruction of chains from tt-sets

By performing a backtracking search, we can reconstruct all
possible chains corresponding to a tt-set.

Beginning with the set of truth tables corresponding to inputs,
try applying all possible gates which result in a truth table
belonging to the tt-set.

We enforce the ‘canonical ordering’ and ‘triangle free’ properties
at all times.

The total runtime is O(Sn3) where S is the number of chains
outputted by the algorithm.

Reconstruction of chains from tt-sets

By performing a backtracking search, we can reconstruct all
possible chains corresponding to a tt-set.

Beginning with the set of truth tables corresponding to inputs,
try applying all possible gates which result in a truth table
belonging to the tt-set.

We enforce the ‘canonical ordering’ and ‘triangle free’ properties
at all times.

The total runtime is O(Sn3) where S is the number of chains
outputted by the algorithm.

Ends of tt-sets

A tt-set T is attainable if it corresponds to at least one chain.

If T \ {e} is still attainable, then we say that e is an end of T .

Ends of tt-sets

A tt-set T is attainable if it corresponds to at least one chain.

If T \ {e} is still attainable, then we say that e is an end of T .

Appending a gate
Appending a gate cannot cause the number of ends to decrease by
more than 1.

Symmetries

Recall that we have a large symmetry group at play.

The search becomes much faster if we only store canonical tt-sets.

Breadth-first search

Define N(T) to be the set of possible ‘next functions’:

N(T) = {x ◦ y : x , y ∈ T ∪ I and ◦ ∈ O} \ (T ∪ I ∪ {0})

We construct all canonical attainable tt-sets by induction on size:

Define X0 = {{}} to be the set containing the empty tt-set.

Define
Xn+1 = {canonicalise(T ∪ {e}) : T ∈ Xn and e ∈ N(T)}

For a given search depth, we can also discard tt-sets with too many
ends.

Breadth-first search

Define N(T) to be the set of possible ‘next functions’:

N(T) = {x ◦ y : x , y ∈ T ∪ I and ◦ ∈ O} \ (T ∪ I ∪ {0})

We construct all canonical attainable tt-sets by induction on size:

Define X0 = {{}} to be the set containing the empty tt-set.

Define
Xn+1 = {canonicalise(T ∪ {e}) : T ∈ Xn and e ∈ N(T)}

For a given search depth, we can also discard tt-sets with too many
ends.

Breadth-first search

Define N(T) to be the set of possible ‘next functions’:

N(T) = {x ◦ y : x , y ∈ T ∪ I and ◦ ∈ O} \ (T ∪ I ∪ {0})

We construct all canonical attainable tt-sets by induction on size:

Define X0 = {{}} to be the set containing the empty tt-set.

Define
Xn+1 = {canonicalise(T ∪ {e}) : T ∈ Xn and e ∈ N(T)}

For a given search depth, we can also discard tt-sets with too many
ends.

How does previous work differ?

Previous approaches directly searched the (much larger) space of
DAGs rather than canonical attainable tt-sets.

Donald Knuth (2011) used ‘top-down’ and ‘bottom-up’
reductions together with brute-force searches for ‘special’
(irreducible) DAGs.

Knuth was interested in determining the minimum cost for each
function, rather than finding all optimal chains.

Haaswijk, Soeken, Mishchenko, and De Micheli (2018) used
SAT solvers to search for DAGs of a particular topology implementing
a given function.

https://people.eecs.berkeley.edu/~alanmi/publications/2018/dac18_topo.pdf

How does previous work differ?

Previous approaches directly searched the (much larger) space of
DAGs rather than canonical attainable tt-sets.

Donald Knuth (2011) used ‘top-down’ and ‘bottom-up’
reductions together with brute-force searches for ‘special’
(irreducible) DAGs.

Knuth was interested in determining the minimum cost for each
function, rather than finding all optimal chains.

Haaswijk, Soeken, Mishchenko, and De Micheli (2018) used
SAT solvers to search for DAGs of a particular topology implementing
a given function.

https://people.eecs.berkeley.edu/~alanmi/publications/2018/dac18_topo.pdf

How does previous work differ?

Previous approaches directly searched the (much larger) space of
DAGs rather than canonical attainable tt-sets.

Donald Knuth (2011) used ‘top-down’ and ‘bottom-up’
reductions together with brute-force searches for ‘special’
(irreducible) DAGs.

Knuth was interested in determining the minimum cost for each
function, rather than finding all optimal chains.

Haaswijk, Soeken, Mishchenko, and De Micheli (2018) used
SAT solvers to search for DAGs of a particular topology implementing
a given function.

https://people.eecs.berkeley.edu/~alanmi/publications/2018/dac18_topo.pdf

Reducing constant factors

Canonicalising a tt-set is expensive. To do an 11-gate search, we do
the following:

Use the algorithm to compute all tt-sets in X9 with ≤ 3 ends.

Brute-force all possibilities for the last two gates.

Checking optimality

We want to check optimality, i.e. determine whether the purple
vertex cannot be attained with fewer gates.

We use a 256 MB array (one bit for each of the 231 normal functions)
to indicate whether they’ve previously been constructed with lower
cost.

Checking optimality

We want to check optimality, i.e. determine whether the purple
vertex cannot be attained with fewer gates.

We use a 256 MB array (one bit for each of the 231 normal functions)
to indicate whether they’ve previously been constructed with lower
cost.

Practical problems

Even a depth-9 search does not fit in memory (11 terabytes
uncompressed).

n tt-sets uncompressed size compressed size
6 3 million 73 MB 5 MB
7 130 million 3.6 GB 159 MB
8 6.2 billion 197 GB 6.4 GB
9 (310 billion) (11 TB)

We need to somehow partition the search space into manageable
chunks, but this is not particularly easy.

Practical problems

Even a depth-9 search does not fit in memory (11 terabytes
uncompressed).

n tt-sets uncompressed size compressed size
6 3 million 73 MB 5 MB
7 130 million 3.6 GB 159 MB
8 6.2 billion 197 GB 6.4 GB
9 (310 billion) (11 TB)

We need to somehow partition the search space into manageable
chunks, but this is not particularly easy.

Invariants and signatures

An invariant is an easily-computable function f from truth tables to
an arbitrary finite set which is constant on equivalence classes.

For example, the bias, or absolute difference between the number of
‘1’s and ‘0’s in the truth table, is an invariant.

Given an invariant f , the signature of a tt-set T is the multiset
{f (x) : x ∈ T}.

Invariants and signatures

An invariant is an easily-computable function f from truth tables to
an arbitrary finite set which is constant on equivalence classes.

For example, the bias, or absolute difference between the number of
‘1’s and ‘0’s in the truth table, is an invariant.

Given an invariant f , the signature of a tt-set T is the multiset
{f (x) : x ∈ T}.

Invariants and signatures

An invariant is an easily-computable function f from truth tables to
an arbitrary finite set which is constant on equivalence classes.

For example, the bias, or absolute difference between the number of
‘1’s and ‘0’s in the truth table, is an invariant.

Given an invariant f , the signature of a tt-set T is the multiset
{f (x) : x ∈ T}.

Distributing the workload

Proceed as before, but partition the creation of each Xn into separate
tasks, one for each size-n signature.

The task corresponding to a size-n signature S reads the files saved
behind by the tasks corresponding to size-(n − 1) signatures S \ {s}
for each s ∈ S .

We avoid saving tt-sets to disk in the last level of the search tree
(n = 9), because there are no downstream tasks to consume them.

Distributing the workload

Proceed as before, but partition the creation of each Xn into separate
tasks, one for each size-n signature.

The task corresponding to a size-n signature S reads the files saved
behind by the tasks corresponding to size-(n − 1) signatures S \ {s}
for each s ∈ S .

We avoid saving tt-sets to disk in the last level of the search tree
(n = 9), because there are no downstream tasks to consume them.

Distributing the workload

Proceed as before, but partition the creation of each Xn into separate
tasks, one for each size-n signature.

The task corresponding to a size-n signature S reads the files saved
behind by the tasks corresponding to size-(n − 1) signatures S \ {s}
for each s ∈ S .

We avoid saving tt-sets to disk in the last level of the search tree
(n = 9), because there are no downstream tasks to consume them.

Results

We applied this depth-11 exhaustive search procedure to two search
problems:

5-input 1-output functions (616126 equivalence classes);

4-input 2-output functions (1476218 equivalence classes).

Each of the two searches took a few days on an AWS r5a.24xlarge
instance (96 virtual cores + 768 GB memory), costing < $1000.

But how do we use these results?

Results

We applied this depth-11 exhaustive search procedure to two search
problems:

5-input 1-output functions (616126 equivalence classes);

4-input 2-output functions (1476218 equivalence classes).

Each of the two searches took a few days on an AWS r5a.24xlarge
instance (96 virtual cores + 768 GB memory), costing < $1000.

But how do we use these results?

Building a database
For each equivalence class of functions, we took all Boolean chains
with minimum cost and delay on the Pareto frontier.

The k-perfect hashtable

We hash a canonical 5-input 1-output truth table using the following
pair of functions:

auto h1 = (x ^ (x >> 7) ^ (x >> 4)) & 0x1ffff;

auto h2 = (x ^ (x >> 7) ^ (x >> 24)) & 0x1ff;

The function h1 is 15-perfect, mapping at most 15 of the 616124
canonical nontrivial truth tables to the same bucket.

The function h2 is 1-perfect (injective) within each bucket.

The k-perfect hashtable

We hash a canonical 5-input 1-output truth table using the following
pair of functions:

auto h1 = (x ^ (x >> 7) ^ (x >> 4)) & 0x1ffff;

auto h2 = (x ^ (x >> 7) ^ (x >> 24)) & 0x1ff;

The function h1 is 15-perfect, mapping at most 15 of the 616124
canonical nontrivial truth tables to the same bucket.

The function h2 is 1-perfect (injective) within each bucket.

Looking up a canonical truth table
By squeezing each bucket into 64 bytes, it is possible to lookup the
cost and location of any canonical function by retrieving a single
cache line:

Overview

To find all chains for a (not necessarily canonical) function:

Canonicalize it: this would naively take 10 µs, but we
obsessively reduced it down to 200 ns.

Lookup the cost and location: this is a single cache line
retrieval plus a handful of instructions, so takes around 100 ns.

Iterate over optimal chains: this step takes variable time,
depending on the number of chains, but they’re contiguous in
memory so this is again reasonably fast.

https://cp4space.hatsya.com/2019/05/28/five-input-boolean-circuits/
https://cp4space.hatsya.com/2019/05/28/five-input-boolean-circuits/

Overview

To find all chains for a (not necessarily canonical) function:

Canonicalize it: this would naively take 10 µs, but we
obsessively reduced it down to 200 ns.

Lookup the cost and location: this is a single cache line
retrieval plus a handful of instructions, so takes around 100 ns.

Iterate over optimal chains: this step takes variable time,
depending on the number of chains, but they’re contiguous in
memory so this is again reasonably fast.

https://cp4space.hatsya.com/2019/05/28/five-input-boolean-circuits/
https://cp4space.hatsya.com/2019/05/28/five-input-boolean-circuits/

Overview

To find all chains for a (not necessarily canonical) function:

Canonicalize it: this would naively take 10 µs, but we
obsessively reduced it down to 200 ns.

Lookup the cost and location: this is a single cache line
retrieval plus a handful of instructions, so takes around 100 ns.

Iterate over optimal chains: this step takes variable time,
depending on the number of chains, but they’re contiguous in
memory so this is again reasonably fast.

https://cp4space.hatsya.com/2019/05/28/five-input-boolean-circuits/
https://cp4space.hatsya.com/2019/05/28/five-input-boolean-circuits/

