
Searching for optimal Boolean chains

Adam P. Goucher

February 28, 2023

Boolean chains

A Boolean chain is a sequence of 2-input Boolean gates.

For example, the full adder has n = 5 gates and k = 3 inputs:

1. y1 = x1 ⊕ x2;

2. y2 = x1 ∧ x2;

3. y3 = y1 ⊕ x3;

4. y4 = y1 ∧ x3;

5. y5 = y2 ∨ y4.

Each gate can only depend on inputs or previously-computed values.

This ensures that everything is well-defined as a function of the inputs;
there can’t be any cyclic references. Structurally the variables form a
directed acyclic graph, where the inputs have in-degree 0 and everything
else has in-degree 2.

Five normal gates

Without loss of generality we can assume that all gates ◦ are:

• Nontrivial: a ◦ b depends on both a and b;

1

• Zero-preserving: 0 ◦ 0 = 0.

Knuth (2011) calls these normal chains.

Out of the 22
2
= 16 functions, 8 are zero-preserving, of which 5 are

nontrivial:

O = {⊕,∧,∨, <,>}

From left to right, these are the three symmetric gates XOR, AND, and
OR, and two asymmetric gates, both of which are just an AND gate
with one of the two inputs complemented.

These correspond to AVX instructions vpxor, vpand, vpor, vpandn.

These are processor instructions which are capable of performing a Boolean
operation in a vectorised manner on vectors of 256 bits. More advanced
vector processors, such as CPUs with AVX-512 and modern GPUs, have
even wider vector registers and support for arbitrary 3-input Boolean
operations.

This means that if you can represent your computation as a Boolean
circuit, then you can evaluate it in a massively parallel manner on many
distinct sets of inputs. This strategy is called bitslicing, and I’ve used it
before for accelerating a regular expression engine and cellular automata
library on both the CPU and GPU.

The speed of a bitsliced computation will depend principally on the
number of gates and the amount of instruction-level parallelism we can
use, so it’s advantageous to optimise Boolean circuits. How do we do
that?

Rewriting

Many logic synthesis tools (e.g. Berkeley’s ABC) work by local rewriting:
replacing small subcircuits with more efficient equivalents.

2

https://spectralcompute.co.uk/regex
https://catagolue.hatsya.com/home
https://catagolue.hatsya.com/home

Tools such as ABC also include a mixture of other optimisation passes,
such as refactoring, balancing, and SAT-sweeping, but for this talk we’ll
focus on rewriting.

Prior work

Berkeley’s ABC finds 4-input cuts and optimally rewrites those.

Nan Li and Elena Dubrova (2011) found significant benefits (5% cost
reduction) by using a library of 1200 5-input functions.

3

https://people.eecs.berkeley.edu/~alanmi/abc/
https://arxiv.org/abs/1108.3675

We shall take this to its ultimate logical conclusion: finding all optimal
chains for 616125 of the 616126 equivalence classes of 5-input functions.

We’ve included a to-scale illustration of the number of equivalence classes
of functions handled by each of these approaches. In blue we have the
222 equivalence classes of 4-input functions; in green we have Li and
Dubrova’s 1200 equivalence classes of 5-input functions; in lilac, we have
our collection. But what exactly do we mean by equivalence classes, and
what’s the reason for only computing optimal chains for all but one of
them, rather than all of them?

Equivalence classes

We can transform a k-input ℓ-output function into an equivalent function by:

• Permuting inputs (k! possibilities);

• Negating inputs (2k possibilities);

• Permuting outputs (ℓ! possibilities);

• Negating outputs (2ℓ possibilities);

which generate the group (S2 ≀ Sk)× (S2 ≀ Sℓ) of order 2
k+ℓ(k!)(ℓ!).

4

If two functions are equivalent in this sense, then a Boolean chain for
one of these functions can be easily converted into a Boolean chain for
the other.

For example, there are a total of 23 = 8 functions that are equivalent
to the 2-input AND gate, by complementing any combination of its
inputs and output. We say that these eight functions form an equivalence
class. Let’s write down the truth tables of these eight functions:

0001 < 0010 < 0100 < 0111 < 1000 < 1011 < 1101 < 1110

We describe the lexicographically first truth table in an equivalence class
as canonical.

In this case, it’s the truth table 0001. By only concentrating on canonical
functions and finding optimal Boolean chains for those, we significantly
reduce the amount of storage space that we’ll need for a database of
optimal Boolean chains.

We’ve introduced another idea here: by representing functions as
truth tables which are in turn encoded in binary as integers, we can
store functions on a computer very efficiently: a 5-input truth table,
for example, can be represented as a 32-bit integer, because 25 = 32.
Lexicographical comparison of truth tables is then just numerical com-
parison, which is extraordinarily cheap, and we can similarly compute
the effects of applying our primitive operations to existing truth-tables
by using bitwise instructions.

Anyway, how many equivalence classes do we have, in general?

5

Counting equivalence classes

We can count the equivalence classes using Burnside’s lemma; the domi-
nant term will be:

|C| ≊ 22
kℓ

2k+ℓ(k!)(ℓ!)

The colourful cube here is the truth table of the 3-input XOR function.
Different ways to permute and complement the inputs of the function
simply correspond to rotating and reflecting this cube, and negating the
output corresponds to swapping the two colours.

The dominant term is just the total number of truth tables divided
by the size of the symmetry group. This doesn’t quite give the correct
answer, because it doesn’t account for truth tables which have nontrivial
symmetries, such as the 3-input XOR function visualised above. In
particular, it doesn’t even give you an integer! Burnside’s lemma gives
the appropriate additional correction terms to compute the exact answer.

If you apply this with k = 5 and ℓ = 1, you get 616126.

6

https://en.wikipedia.org/wiki/Burnside_lemma

Number of classes of functions of each cost

n 5-input 1-output 4-input 2-output
0 2 4
1 2 8
2 5 38
3 20 193
4 93 916
5 389 4869
6 1988 27219
7 11382 135402
8 60713 475926
9 221541 713796
10 293455 117828
11 26535 19
12 1 0

Total 616126 1476218

Here are the number of equivalence classes for k = 5, ℓ = 1 and for
k = 4, ℓ = 2, categorised according to the cost, or length of the minimal
Boolean chain realising a function in that class.

The middle column of this table, namely the costs for the 5-input 1-
output functions, was computed by Donald Knuth in 2011 using a couple
of computing clusters, one at Stanford and another borrowed from Sun
Research. We both independently verified these results and computed
the right-hand column as a side-effect of our own search methodology,
which is more cost-effective: we managed to do it in a few days on a
budget of around $1000. Moreover, rather than just getting the cost
of each function, we go much further and compute all optimal Boolean
chains.

This is where the number 616126 comes from, and the reason that we
only compute all optimal chains for 616125 of these equivalence classes
is that the remaining one has cost 12, and a depth-12 exhaustive search
would take about two orders of magnitude longer to complete than a
depth-11 exhaustive search.

Let’s get a handle on how large the search space is.

7

Size of search space

With k inputs and n gates, the total number of Boolean chains is:

n−1∏
i=0

5

(
i+ k

2

)

In particular, for 5 inputs and 11 gates, the number of chains is:

18874939423183593750000000 ≊ 1.89× 1025

This is about 60x more than the number of floating-point operations
used to train GPT-3 (3.14× 1023).

Note that this is only a numerical comparison to give a rough idea of the
size of the search space that we’re dealing with. Evaluating the truth
table of a Boolean chain and checking whether it’s optimal is much more
expensive than doing a single floating-point operation, so ‘60 times GPT-
3’ is a massive underestimate of the cost of brute-forcing this space.

In the remainder of the talk, we’ll discuss some ideas that manage
to reduce the size of this search by about 9 or 10 orders of magnitude,
as well as how to make this search efficiently distributable and how to
maximise the number of nodes of the search tree that we can traverse
per unit time.

Room for improvement I: canonical ordering

In many cases, a single DAG can correspond to multiple Boolean chains:

8

1

5

2 3

6

4

7

For example, the order of computing variables 5 and 6 could be swapped.

There’s a way to make the ordering of a DAG canonical: essentially we
inductively order the nodes in the DAG by looking at the relative orders
of the inputs to that node, using the operation ◦ ∈ O as a tie-breaker.

Room for improvement II: triangle-free

Also, triangles can be removed from our DAG without loss of generality:

1

3

2

4

1

3

2

4

9

In particular, if you have a situation like the DAG on the left, then we
can replace it with the equivalent circuit on the right which has strictly
better instruction-level parallelism.

Key insight

0x00ff

0x0ff0

0x0f0f 0x3333

0x6666

0x5555

0x6996

Here’s an example of a Boolean chain which computes the XOR of four
inputs. We’ve annotated each node by its truth table, written in hex-
adecimal rather than binary for brevity. Now we’re going to do some-
thing quite drastic, which is to forget the whole DAG structure and just
represent this by the set of its non-input truth tables.

Simply represent this as the set {0x0ff0,0x6666,0x6996}.

This may feel like it throws away a lot of information, and it does,
because many different Boolean chains correspond to the same set of
truth tables, henceforth abbreviated to tt-set. But we’ll see that we can
efficiently recover all of these chains from just the tt-set.

10

Reconstruction of chains from tt-sets

By performing a backtracking search, we can reconstruct all possible
chains corresponding to a tt-set.

• Beginning with the set of truth tables corresponding to inputs, try
applying all possible gates which result in a truth table belonging to
the tt-set.

• We enforce the ‘canonical ordering’ and ‘triangle free’ properties at all
times.

• The total runtime is O(Sn3) where S is the number of chains outputted
by the algorithm.

The way that we do this is to first construct Cayley tables telling us
which elements in the tt-set can be expressed by applying one of our
primitive operations to a pair of other elements in the set. Given these
Cayley tables, we can then very efficiently perform a depth-first search
by applying a gate at a time. The amount of time that we spend in
each node of the search tree is O(n2), so a single path through this
search tree takes time O(n3), and because we never reach any ‘dead
ends’ in the search tree, this gives an upper bound of O(Sn3) for the
whole process.

Ends of tt-sets

A tt-set T is attainable if it corresponds to at least one chain.

We can just use the previous algorithm to determine attainability: either
it completes without producing any output chains, in which case we know
that the set is unattainable. As soon as it does yield the first output,
we can prematurely interrupt the algorithm because it has verified that
the tt-set is attainable. This takes O(n3) time.

11

If T \ {e} is still attainable, then we say that e is an end of T .

We can therefore determine the ends of a tt-set in time O(n4) by just
checking the attainability of each tt-set obtained by removing one of the
elements.

Why do we call these ‘ends’? The reason is that they’re exactly the
functions that appear last in at least one Boolean chain corresponding
to our tt-set.

The reason that they’re interesting is that if we have an optimal chain
for a k-input ℓ-output function, then the ends must form a subset of the
outputs: if there’s an end that isn’t one of our outputs, we can remove it
from the tt-set and find a cheaper Boolean chain. As such, each optimal
chain has at most ℓ ends. It could have fewer, because one of the outputs
might be a dependency of another output.

Appending a gate

Appending a gate cannot cause the number of ends to decrease by more than
1.

12

Specifically, each new gate that we add introduces an end, namely its
output, and consumes at most two ends, namely its inputs.

This notion of ends allows us to backtrack when searching for tt-sets
corresponding to optimal chains. If we have a tt-set containing c gates,
and it contains more than ℓ+ n− c ends, then it cannot possibly occur
as a subset of a tt-set corresponding to an optimal chain of length ≤ n.
Effectively we have too many ends and not enough remaining gates left
to tie them all together.

Symmetries

Recall that we have a large symmetry group at play.

13

The search becomes much faster if we only store canonical tt-sets.

Breadth-first search

Define N(T) to be the set of possible ‘next functions’:

N(T) = {x ◦ y : x, y ∈ T ∪ I and ◦ ∈ O} \ (T ∪ I ∪ {0})

In other words, it’s the set of nontrivial functions that are not already
in the tt-set, but can be obtained in a single step.

We construct all canonical attainable tt-sets by induction on size:

• Define X0 = {{}} to be the set containing the empty tt-set.

• Define Xn+1 = {canonicalise(T ∪ {e}) : T ∈ Xn and e ∈ N(T)}

For a given search depth, we can also discard tt-sets with too many ends.

14

How does previous work differ?

Previous approaches directly searched the (much larger) space of DAGs
rather than canonical attainable tt-sets.

• Donald Knuth (2011) used ‘top-down’ and ‘bottom-up’ reductions
together with brute-force searches for ‘special’ (irreducible) DAGs.

• Knuth was interested in determining the minimum cost for each func-
tion, rather than finding all optimal chains.

Haaswijk, Soeken, Mishchenko, and De Micheli (2018) used SAT
solvers to search for DAGs of a particular topology implementing a given
function.

This approach works well if you want to find a Boolean chain for a
specific function, because it can work backwards from the end result as
well as forwards from the inputs. But if you want to find all optimal
Boolean chains for all equivalence classes, then you’d need to repeat this
lots of times, one for each equivalence class of target function and choice
of circuit topology, and that would take infeasibly long.

We’ve described our search algorithm, but there are a few practical
considerations that need addressing.

Reducing constant factors

Canonicalising a tt-set is expensive. To do an 11-gate search, we do the
following:

• Use the algorithm to compute all tt-sets in X9 with ≤ 3 ends.

• Brute-force all possibilities for the last two gates.

15

https://people.eecs.berkeley.edu/~alanmi/publications/2018/dac18_topo.pdf

The whole point of canonicalising the tt-sets is to deduplicate identical
branches of our search tree so that we don’t unnecessarily repeat work.
We do this for the first 9 layers, but not for the last 2, where the cost of
deduplicating the work outweighs the benefit.

Checking optimality

We want to check optimality, i.e. determine whether the purple vertex cannot
be attained with fewer gates.

16

We could canonicalise the truth table and check whether it’s already
been constructed with lower cost. But, as we discussed, canonicalisation
is expensive because the symmetry group is so large. How can we avoid
it?

We use a 256 MB array (one bit for each of the 231 normal functions) to
indicate whether they’ve previously been constructed with lower cost.

Adding this flat bit-set cache in front of the expensive checking code
caused it to run approximately 20x faster.

Practical problems

Even a depth-9 search does not fit in memory (11 terabytes uncompressed).

n tt-sets uncompressed size compressed size
6 3 million 73 MB 5 MB
7 130 million 3.6 GB 159 MB
8 6.2 billion 197 GB 6.4 GB
9 (310 billion) (11 TB)

The figures in this table are measured, apart from the last row, which is
estimated by extrapolation. The reason for the compressed size is that
we use LZMA when saving search progress to disk, but in memory the
data is uncompressed.

We need to somehow partition the search space into manageable
chunks, but this is not particularly easy.

If we had an ordinary search tree, then the branches of this tree could
be mapped to different subtasks. But we ensure that we deduplicate
equivalent tt-sets at each level, so different branches of the tree can
converge into a single branch, and that makes it much harder to cleanly

17

divide into tasks.

Invariants and signatures

An invariant is an easily-computable function f from truth tables to an
arbitrary finite set which is constant on equivalence classes.

A constant function is a valid, albeit useless, invariant. In the other ex-
treme, the finest invariant is the canonicalisation function which outputs
the canonical form of a truth table; the problem with that is that it’s
too expensive to evaluate. We’d ideally like something between these
two extremes.

For example, the bias, or absolute difference between the number of ‘1’s
and ‘0’s in the truth table, is an invariant.

This is easy to compute: the popcount processor instruction gives the
number of ‘1‘s in the truth table, and a handful of arithmetic functions
suffice to calculate the number of ‘0’s and determine the absolute differ-
ence.

Given an invariant f , the signature of a tt-set T is the multiset {f(x) :
x ∈ T}.

So, how does this help with our problem of partitioning the search space?

Distributing the workload

Proceed as before, but partition the creation of each Xn into separate tasks,
one for each size-n signature.

18

The task corresponding to a size-n signature S reads the files saved behind
by the tasks corresponding to size-(n− 1) signatures S \ {s} for each s ∈ S.

We avoid saving tt-sets to disk in the last level of the search tree (n = 9),
because there are no downstream tasks to consume them.

This way, we only need to save a few gigabytes of compressed data
instead of hundreds of gigabytes.

Results

We applied this depth-11 exhaustive search procedure to two search prob-
lems:

• 5-input 1-output functions (616126 equivalence classes);

• 4-input 2-output functions (1476218 equivalence classes).

Each of the two searches took a few days on an AWS r5a.24xlarge
instance (96 virtual cores + 768 GB memory), costing < $1000.

But how do we use these results?

Building a database

For each equivalence class of functions, we took all Boolean chains with
minimum cost and delay on the Pareto frontier.

19

The delay of a Boolean chain is the k-tuple of path lengths from each
of the inputs to the output, and it’s on the Pareto frontier if there isn’t
another chain which strictly dominates it, in the sense of having delay
that’s at least as good with respect to all inputs, and strictly better for
at least one of those inputs.

The section in the middle of this hexdump corresponds to one of the
equivalence classes of Boolean functions. The reason for the all-zeroes
rows above and below this section is to ensure that it’s aligned on a
64-byte cache line boundary.

The first four bytes, 0x0019f3c8, specify the canonical truth table for
this equivalence class. The next four bytes encode the cost of the func-
tion (8), number of delay patterns on the Pareto frontier (5), and total
number of chains (11, which is ‘b’ in hexadecimal). Then we have this
yellow region, containing a four-byte word for each delay pattern, encod-
ing the delay pattern itself along with the number of chains with that
pattern. Then, highlighted in blue, we have the 11 chains themselves,
each occupying 16 bytes.

We can see that out of the first 11 bytes, only the first 8 are nonzero,

20

because these chains contain 8 gates. For the equivalence class directly
above, there are 10 gates in each optimal chain; for the class below, there
are 9. These bytes specify the topology of the DAG, and the last few
bytes specify the types of operations for each gate.

So, this is how they’re stored in the database, but how do we know
where in the database to look to find the optimal chains for a particular
function?

The k-perfect hashtable

We hash a canonical 5-input 1-output truth table using the following pair of
functions:

auto h1 = (x ^ (x >> 7) ^ (x >> 4)) & 0x1ffff;

auto h2 = (x ^ (x >> 7) ^ (x >> 24)) & 0x1ff;

These hash functions are really cheap to evaluate, and the identical parts
of h1 and h2 are amenable to common subexpression elimination. But
what’s so special about these functions?

The function h1 is 15-perfect, mapping at most 15 of the 616124 canonical
nontrivial truth tables to the same bucket.

The function h2 is 1-perfect (injective) within each bucket.

These functions were found by writing down the functional form and
trying all possible values of the shift constants to see which ones have
the desired k-perfectness properties.

Looking up a canonical truth table

By squeezing each bucket into 64 bytes, it is possible to lookup the cost and
location of any canonical function by retrieving a single cache line:

21

Each 64-byte cache line in the hashtable is treated as 16 words, each four
bytes. Up to the first 15 of these contain a value of h2, corresponding
cost of the Boolean function, and a ‘local offset’ which gets added to the
‘global offset’ in the sixteenth word to yield the position of the optimal
chains within the database file. This function outputs both that position
(in the upper 28 bits) and the cost (in the lower 4 bits) as a single 32-bit
integer.

Overview

To find all chains for a (not necessarily canonical) function:

• Canonicalize it: this would naively take 10 µs, but we obsessively
reduced it down to 200 ns.

• Lookup the cost and location: this is a single cache line retrieval
plus a handful of instructions, so takes around 100 ns.

• Iterate over optimal chains: this step takes variable time, depend-
ing on the number of chains, but they’re contiguous in memory so this
is again reasonably fast.

22

https://cp4space.hatsya.com/2019/05/28/five-input-boolean-circuits/
https://cp4space.hatsya.com/2019/05/28/five-input-boolean-circuits/

